Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Near-Complete Haplotype-Phased Genome of the Dikaryotic Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici Reveals High Interhaplotype Diversity.

Identifieur interne : 000053 ( Main/Exploration ); précédent : 000052; suivant : 000054

A Near-Complete Haplotype-Phased Genome of the Dikaryotic Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici Reveals High Interhaplotype Diversity.

Auteurs : Benjamin Schwessinger [Australie] ; Jana Sperschneider [Australie] ; William S. Cuddy [Australie] ; Diana P. Garnica [Australie] ; Marisa E. Miller [États-Unis] ; Jennifer M. Taylor [Australie] ; Peter N. Dodds [Australie] ; Melania Figueroa [États-Unis] ; Robert F. Park [Australie] ; John P. Rathjen [Australie]

Source :

RBID : pubmed:29463659

Descripteurs français

English descriptors

Abstract

A long-standing biological question is how evolution has shaped the genomic architecture of dikaryotic fungi. To answer this, high-quality genomic resources that enable haplotype comparisons are essential. Short-read genome assemblies for dikaryotic fungi are highly fragmented and lack haplotype-specific information due to the high heterozygosity and repeat content of these genomes. Here, we present a diploid-aware assembly of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici based on long reads using the FALCON-Unzip assembler. Transcriptome sequencing data sets were used to infer high-quality gene models and identify virulence genes involved in plant infection referred to as effectors. This represents the most complete Puccinia striiformis f. sp. tritici genome assembly to date (83 Mb, 156 contigs, N50 of 1.5 Mb) and provides phased haplotype information for over 92% of the genome. Comparisons of the phase blocks revealed high interhaplotype diversity of over 6%. More than 25% of all genes lack a clear allelic counterpart. When we investigated genome features that potentially promote the rapid evolution of virulence, we found that candidate effector genes are spatially associated with conserved genes commonly found in basidiomycetes. Yet, candidate effectors that lack an allelic counterpart are more distant from conserved genes than allelic candidate effectors and are less likely to be evolutionarily conserved within the P. striiformis species complex and Pucciniales In summary, this haplotype-phased assembly enabled us to discover novel genome features of a dikaryotic plant-pathogenic fungus previously hidden in collapsed and fragmented genome assemblies.IMPORTANCE Current representations of eukaryotic microbial genomes are haploid, hiding the genomic diversity intrinsic to diploid and polyploid life forms. This hidden diversity contributes to the organism's evolutionary potential and ability to adapt to stress conditions. Yet, it is challenging to provide haplotype-specific information at a whole-genome level. Here, we take advantage of long-read DNA sequencing technology and a tailored-assembly algorithm to disentangle the two haploid genomes of a dikaryotic pathogenic wheat rust fungus. The two genomes display high levels of nucleotide and structural variations, which lead to allelic variation and the presence of genes lacking allelic counterparts. Nonallelic candidate effector genes, which likely encode important pathogenicity factors, display distinct genome localization patterns and are less likely to be evolutionary conserved than those which are present as allelic pairs. This genomic diversity may promote rapid host adaptation and/or be related to the age of the sequenced isolate since last meiosis.

DOI: 10.1128/mBio.02275-17
PubMed: 29463659
PubMed Central: PMC5821087


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Near-Complete Haplotype-Phased Genome of the Dikaryotic Wheat Stripe Rust Fungus
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
Reveals High Interhaplotype Diversity.</title>
<author>
<name sortKey="Schwessinger, Benjamin" sort="Schwessinger, Benjamin" uniqKey="Schwessinger B" first="Benjamin" last="Schwessinger">Benjamin Schwessinger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Biology, the Australian National University, Acton, ACT, Australia benjamin.schwessinger@anu.edu.au will.cuddy@dpi.nsw.gov.au john.rathjen@anu.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Research School of Biology, the Australian National University, Acton, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sperschneider, Jana" sort="Sperschneider, Jana" uniqKey="Sperschneider J" first="Jana" last="Sperschneider">Jana Sperschneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, WA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, WA</wicri:regionArea>
<wicri:noRegion>WA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cuddy, William S" sort="Cuddy, William S" uniqKey="Cuddy W" first="William S" last="Cuddy">William S. Cuddy</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Breeding Institute, Faculty of Agriculture and Environment, the University of Sydney, Narellan, NSW, Australia benjamin.schwessinger@anu.edu.au will.cuddy@dpi.nsw.gov.au john.rathjen@anu.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Plant Breeding Institute, Faculty of Agriculture and Environment, the University of Sydney, Narellan, NSW</wicri:regionArea>
<orgName type="university">Université de Sydney</orgName>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Garnica, Diana P" sort="Garnica, Diana P" uniqKey="Garnica D" first="Diana P" last="Garnica">Diana P. Garnica</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Biology, the Australian National University, Acton, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Biology, the Australian National University, Acton, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miller, Marisa E" sort="Miller, Marisa E" uniqKey="Miller M" first="Marisa E" last="Miller">Marisa E. Miller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Jennifer M" sort="Taylor, Jennifer M" uniqKey="Taylor J" first="Jennifer M" last="Taylor">Jennifer M. Taylor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Park, Robert F" sort="Park, Robert F" uniqKey="Park R" first="Robert F" last="Park">Robert F. Park</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Breeding Institute, Faculty of Agriculture and Environment, the University of Sydney, Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Breeding Institute, Faculty of Agriculture and Environment, the University of Sydney, Narellan, NSW</wicri:regionArea>
<orgName type="university">Université de Sydney</orgName>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rathjen, John P" sort="Rathjen, John P" uniqKey="Rathjen J" first="John P" last="Rathjen">John P. Rathjen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Biology, the Australian National University, Acton, ACT, Australia benjamin.schwessinger@anu.edu.au will.cuddy@dpi.nsw.gov.au john.rathjen@anu.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Research School of Biology, the Australian National University, Acton, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29463659</idno>
<idno type="pmid">29463659</idno>
<idno type="doi">10.1128/mBio.02275-17</idno>
<idno type="pmc">PMC5821087</idno>
<idno type="wicri:Area/Main/Corpus">000045</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000045</idno>
<idno type="wicri:Area/Main/Curation">000045</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000045</idno>
<idno type="wicri:Area/Main/Exploration">000045</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Near-Complete Haplotype-Phased Genome of the Dikaryotic Wheat Stripe Rust Fungus
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
Reveals High Interhaplotype Diversity.</title>
<author>
<name sortKey="Schwessinger, Benjamin" sort="Schwessinger, Benjamin" uniqKey="Schwessinger B" first="Benjamin" last="Schwessinger">Benjamin Schwessinger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Biology, the Australian National University, Acton, ACT, Australia benjamin.schwessinger@anu.edu.au will.cuddy@dpi.nsw.gov.au john.rathjen@anu.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Research School of Biology, the Australian National University, Acton, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sperschneider, Jana" sort="Sperschneider, Jana" uniqKey="Sperschneider J" first="Jana" last="Sperschneider">Jana Sperschneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, WA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, WA</wicri:regionArea>
<wicri:noRegion>WA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cuddy, William S" sort="Cuddy, William S" uniqKey="Cuddy W" first="William S" last="Cuddy">William S. Cuddy</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Breeding Institute, Faculty of Agriculture and Environment, the University of Sydney, Narellan, NSW, Australia benjamin.schwessinger@anu.edu.au will.cuddy@dpi.nsw.gov.au john.rathjen@anu.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Plant Breeding Institute, Faculty of Agriculture and Environment, the University of Sydney, Narellan, NSW</wicri:regionArea>
<orgName type="university">Université de Sydney</orgName>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Garnica, Diana P" sort="Garnica, Diana P" uniqKey="Garnica D" first="Diana P" last="Garnica">Diana P. Garnica</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Biology, the Australian National University, Acton, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Biology, the Australian National University, Acton, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miller, Marisa E" sort="Miller, Marisa E" uniqKey="Miller M" first="Marisa E" last="Miller">Marisa E. Miller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Jennifer M" sort="Taylor, Jennifer M" uniqKey="Taylor J" first="Jennifer M" last="Taylor">Jennifer M. Taylor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Park, Robert F" sort="Park, Robert F" uniqKey="Park R" first="Robert F" last="Park">Robert F. Park</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Breeding Institute, Faculty of Agriculture and Environment, the University of Sydney, Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Breeding Institute, Faculty of Agriculture and Environment, the University of Sydney, Narellan, NSW</wicri:regionArea>
<orgName type="university">Université de Sydney</orgName>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rathjen, John P" sort="Rathjen, John P" uniqKey="Rathjen J" first="John P" last="Rathjen">John P. Rathjen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Biology, the Australian National University, Acton, ACT, Australia benjamin.schwessinger@anu.edu.au will.cuddy@dpi.nsw.gov.au john.rathjen@anu.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Research School of Biology, the Australian National University, Acton, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (isolation & purification)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Haplotypes (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Triticum (microbiology)</term>
<term>Virulence Factors (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (isolement et purification)</term>
<term>Facteurs de virulence (génétique)</term>
<term>Génome fongique (MeSH)</term>
<term>Haplotypes (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Triticum (microbiologie)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Basidiomycota</term>
<term>Facteurs de virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Variation</term>
<term>Genome, Fungal</term>
<term>Haplotypes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome fongique</term>
<term>Haplotypes</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A long-standing biological question is how evolution has shaped the genomic architecture of dikaryotic fungi. To answer this, high-quality genomic resources that enable haplotype comparisons are essential. Short-read genome assemblies for dikaryotic fungi are highly fragmented and lack haplotype-specific information due to the high heterozygosity and repeat content of these genomes. Here, we present a diploid-aware assembly of the wheat stripe rust fungus
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
based on long reads using the FALCON-Unzip assembler. Transcriptome sequencing data sets were used to infer high-quality gene models and identify virulence genes involved in plant infection referred to as effectors. This represents the most complete
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
genome assembly to date (83 Mb, 156 contigs,
<i>N</i>
<sub>50</sub>
of 1.5 Mb) and provides phased haplotype information for over 92% of the genome. Comparisons of the phase blocks revealed high interhaplotype diversity of over 6%. More than 25% of all genes lack a clear allelic counterpart. When we investigated genome features that potentially promote the rapid evolution of virulence, we found that candidate effector genes are spatially associated with conserved genes commonly found in basidiomycetes. Yet, candidate effectors that lack an allelic counterpart are more distant from conserved genes than allelic candidate effectors and are less likely to be evolutionarily conserved within the
<i>P. striiformis</i>
species complex and
<i>Pucciniales</i>
In summary, this haplotype-phased assembly enabled us to discover novel genome features of a dikaryotic plant-pathogenic fungus previously hidden in collapsed and fragmented genome assemblies.
<b>IMPORTANCE</b>
Current representations of eukaryotic microbial genomes are haploid, hiding the genomic diversity intrinsic to diploid and polyploid life forms. This hidden diversity contributes to the organism's evolutionary potential and ability to adapt to stress conditions. Yet, it is challenging to provide haplotype-specific information at a whole-genome level. Here, we take advantage of long-read DNA sequencing technology and a tailored-assembly algorithm to disentangle the two haploid genomes of a dikaryotic pathogenic wheat rust fungus. The two genomes display high levels of nucleotide and structural variations, which lead to allelic variation and the presence of genes lacking allelic counterparts. Nonallelic candidate effector genes, which likely encode important pathogenicity factors, display distinct genome localization patterns and are less likely to be evolutionary conserved than those which are present as allelic pairs. This genomic diversity may promote rapid host adaptation and/or be related to the age of the sequenced isolate since last meiosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29463659</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>02</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>A Near-Complete Haplotype-Phased Genome of the Dikaryotic Wheat Stripe Rust Fungus
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
Reveals High Interhaplotype Diversity.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e02275-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.02275-17</ELocationID>
<Abstract>
<AbstractText>A long-standing biological question is how evolution has shaped the genomic architecture of dikaryotic fungi. To answer this, high-quality genomic resources that enable haplotype comparisons are essential. Short-read genome assemblies for dikaryotic fungi are highly fragmented and lack haplotype-specific information due to the high heterozygosity and repeat content of these genomes. Here, we present a diploid-aware assembly of the wheat stripe rust fungus
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
based on long reads using the FALCON-Unzip assembler. Transcriptome sequencing data sets were used to infer high-quality gene models and identify virulence genes involved in plant infection referred to as effectors. This represents the most complete
<i>Puccinia striiformis</i>
f. sp.
<i>tritici</i>
genome assembly to date (83 Mb, 156 contigs,
<i>N</i>
<sub>50</sub>
of 1.5 Mb) and provides phased haplotype information for over 92% of the genome. Comparisons of the phase blocks revealed high interhaplotype diversity of over 6%. More than 25% of all genes lack a clear allelic counterpart. When we investigated genome features that potentially promote the rapid evolution of virulence, we found that candidate effector genes are spatially associated with conserved genes commonly found in basidiomycetes. Yet, candidate effectors that lack an allelic counterpart are more distant from conserved genes than allelic candidate effectors and are less likely to be evolutionarily conserved within the
<i>P. striiformis</i>
species complex and
<i>Pucciniales</i>
In summary, this haplotype-phased assembly enabled us to discover novel genome features of a dikaryotic plant-pathogenic fungus previously hidden in collapsed and fragmented genome assemblies.
<b>IMPORTANCE</b>
Current representations of eukaryotic microbial genomes are haploid, hiding the genomic diversity intrinsic to diploid and polyploid life forms. This hidden diversity contributes to the organism's evolutionary potential and ability to adapt to stress conditions. Yet, it is challenging to provide haplotype-specific information at a whole-genome level. Here, we take advantage of long-read DNA sequencing technology and a tailored-assembly algorithm to disentangle the two haploid genomes of a dikaryotic pathogenic wheat rust fungus. The two genomes display high levels of nucleotide and structural variations, which lead to allelic variation and the presence of genes lacking allelic counterparts. Nonallelic candidate effector genes, which likely encode important pathogenicity factors, display distinct genome localization patterns and are less likely to be evolutionary conserved than those which are present as allelic pairs. This genomic diversity may promote rapid host adaptation and/or be related to the age of the sequenced isolate since last meiosis.</AbstractText>
<CopyrightInformation>Copyright © 2018 Schwessinger et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schwessinger</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0002-7194-2922</Identifier>
<AffiliationInfo>
<Affiliation>Research School of Biology, the Australian National University, Acton, ACT, Australia benjamin.schwessinger@anu.edu.au will.cuddy@dpi.nsw.gov.au john.rathjen@anu.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sperschneider</LastName>
<ForeName>Jana</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, WA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cuddy</LastName>
<ForeName>William S</ForeName>
<Initials>WS</Initials>
<AffiliationInfo>
<Affiliation>Plant Breeding Institute, Faculty of Agriculture and Environment, the University of Sydney, Narellan, NSW, Australia benjamin.schwessinger@anu.edu.au will.cuddy@dpi.nsw.gov.au john.rathjen@anu.edu.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garnica</LastName>
<ForeName>Diana P</ForeName>
<Initials>DP</Initials>
<AffiliationInfo>
<Affiliation>Research School of Biology, the Australian National University, Acton, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Marisa E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>Jennifer M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
<AffiliationInfo>
<Affiliation>Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Figueroa</LastName>
<ForeName>Melania</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-2636-661X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Robert F</ForeName>
<Initials>RF</Initials>
<AffiliationInfo>
<Affiliation>Plant Breeding Institute, Faculty of Agriculture and Environment, the University of Sydney, Narellan, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rathjen</LastName>
<ForeName>John P</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Research School of Biology, the Australian National University, Acton, ACT, Australia benjamin.schwessinger@anu.edu.au will.cuddy@dpi.nsw.gov.au john.rathjen@anu.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037521">Virulence Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="Y">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006239" MajorTopicYN="Y">Haplotypes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037521" MajorTopicYN="N">Virulence Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Dikaryon</Keyword>
<Keyword MajorTopicYN="Y">basidiomycetes</Keyword>
<Keyword MajorTopicYN="Y">genomics</Keyword>
<Keyword MajorTopicYN="Y">plant pathogens</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29463659</ArticleId>
<ArticleId IdType="pii">mBio.02275-17</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.02275-17</ArticleId>
<ArticleId IdType="pmc">PMC5821087</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol. 2017 Dec 28;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29282842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:207-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27296143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Mar 1;32(5):767-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26559507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2015 Dec;35:57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2016 Aug;26(8):1091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27325116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Apr 25;7(1):1141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28442716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(2):602-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26700936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(8):e1002875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22927814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Sep;70:77-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25042987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2016 Feb 12;8(3):681-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26872771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D574-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26578574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2017 Aug 28;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28846186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D343-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 20;5:416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25191335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 31;6(1):e16526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Apr 1;27(7):1009-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1659:49-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28856640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Oct 1;31(19):3210-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26059717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1639-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(2):743-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Dec;8(12):973-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17984973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Dec;19(12):2318-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Dec;13(12 ):1050-1054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27749838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jan 1;29(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 May 20;17 :380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27207100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24297253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 Mar;33(3):290-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25690850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:197-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21599494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2016 Sep;11(9):1650-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27560171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jun 2;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27252028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 May 28;11(5):e1004806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26020524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Mar 19;16:214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25887218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 24;5:641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25505474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2005 Jul;1(2):166-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Feb;23(3):603-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24354737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 18;464(7287):367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Apr 28;12:124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2017 Oct;18(8):1039-1051</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27885775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 May;100(5):432-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20373963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Sep;144(1):427-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8878706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Aug 18;6(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26286689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Jun;7(6):e1002070</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21695235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):45-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1659:73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28856642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Jan;10(1):e1003903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24465211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1964 May;106:2-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14195748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2016 Feb;87:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26724600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008 Jan 11;9(1):R7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18190707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycology. 2011 Oct 3;2(3):118-141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22059117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2017 Nov 10;15(12 ):771</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29123226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 15;26(6):841-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20110278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Mar 11;16:170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25887563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D7-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26615191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Oct 18;7(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27795389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Aug 22;17 :667</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27550217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Spectr. 2017 Sep;5(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28917057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Mar;217(4):1764-1778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29243824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2013 Sep;103(9):927-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23514262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 22;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23607900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Sep 14;1:15132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27251389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(2):R12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W41-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27141960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e24230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Dec 15;27(24):3423-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 May;13(4):414-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Oct;47(10):828-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Feb 9;7(2):361-376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27913634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Feb 25;16:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25723868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 16;7:44598</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28300209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2010 Mar;11(2):169-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20447267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Oct 1;32(19):3021-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27318204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Apr 1;30(7):923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mob DNA. 2015 Jun 02;6:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26045719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Jun;15(5):433-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24373199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 20;8:1057</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28676811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 26;8(6):e67150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2017 Jul 25;2:17120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28741610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2016 Oct 13;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27746189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Jan;17(1):32-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2017 Aug 1;34(8):2115-2122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28460117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Jul 13;13(7):e1006380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28704545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Mar 24;5:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24715894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Mar;213(4):1625-1631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27575735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2015;53:565-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26047566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24150273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Jul 15;33(14 ):2202-2204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28369201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
<region>
<li>Minnesota</li>
<li>Nouvelle-Galles du Sud</li>
</region>
<settlement>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Schwessinger, Benjamin" sort="Schwessinger, Benjamin" uniqKey="Schwessinger B" first="Benjamin" last="Schwessinger">Benjamin Schwessinger</name>
</noRegion>
<name sortKey="Cuddy, William S" sort="Cuddy, William S" uniqKey="Cuddy W" first="William S" last="Cuddy">William S. Cuddy</name>
<name sortKey="Cuddy, William S" sort="Cuddy, William S" uniqKey="Cuddy W" first="William S" last="Cuddy">William S. Cuddy</name>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<name sortKey="Garnica, Diana P" sort="Garnica, Diana P" uniqKey="Garnica D" first="Diana P" last="Garnica">Diana P. Garnica</name>
<name sortKey="Park, Robert F" sort="Park, Robert F" uniqKey="Park R" first="Robert F" last="Park">Robert F. Park</name>
<name sortKey="Rathjen, John P" sort="Rathjen, John P" uniqKey="Rathjen J" first="John P" last="Rathjen">John P. Rathjen</name>
<name sortKey="Sperschneider, Jana" sort="Sperschneider, Jana" uniqKey="Sperschneider J" first="Jana" last="Sperschneider">Jana Sperschneider</name>
<name sortKey="Taylor, Jennifer M" sort="Taylor, Jennifer M" uniqKey="Taylor J" first="Jennifer M" last="Taylor">Jennifer M. Taylor</name>
</country>
<country name="États-Unis">
<region name="Minnesota">
<name sortKey="Miller, Marisa E" sort="Miller, Marisa E" uniqKey="Miller M" first="Marisa E" last="Miller">Marisa E. Miller</name>
</region>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000053 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000053 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29463659
   |texte=   A Near-Complete Haplotype-Phased Genome of the Dikaryotic Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici Reveals High Interhaplotype Diversity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29463659" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020